ITC 2012

8th International Thin-Film Transistor Conference – Book of Abstracts

Calouste Gulbenkian Foundation
30-31 January, 2012
Lisbon, Portugal
Piezoelectric flexible tactile sensor based on poly-silicon TFT for humanoid robots

L. Maiolo 1,2, A. Pecora 1, F. Maita 1, A. Minotti 1, G. Fortunato 1, D. Ricci 2 and G. Metta 2

1IMM-CNR, Via del Fosso del Cavaliere 100, 00133 - Roma (Italy),
2RBCS, Istituto Italiano di Tecnologia, Via Morego 30, 16163 – Genova (Italy)

E-mail: luca.maiolo@iit.it

The interaction of humanoid robots with different and complex environments demands the implementation of sophisticated sensory capabilities. In particular, the development of tactile sensors is one of the key technical challenges in advanced robotics [1]. Today, touch sensing technology has improved and many new touch sensors have been presented, using different materials and transduction methods [2,3]. However, most of these devices are still big in size and are made on rigid substrates, so they cannot be applied to high sensors density areas such as robot fingertips. For this reason, we propose a new fabrication process for the integration of a piezoelectric flexible capacitor based on PVDF-TrFE with a low temperature polysilicon thin film transistor (LTPS TFT) on a polyimide (PI) support, exploiting an extended gate configuration (Fig.1). Such a device can be fabricated on PI spun on a rigid carrier and then it can be mechanically detached, obtaining touch sensors on highly flexible substrates (PI is about 10 µm thick) [4]. In order to obtain a piezoelectric response, the PVDF-TrFE capacitor is poled at a temperature of 80 °C, by applying an electric field of about 80 V/um. For this device, we used TFTs with W/L=40, mobility of 40 cm²/Vs and an on-off ratio of about 106. The tactile sensor was then connected to an external load of 2.7 kΩ in a source-follower floating gate arrangement, in order to preliminarily test the electromechanical response to a specific stimulus, showing a piezoelectric coefficient of about 25 pC/N (Fig.2) and an output signal of 0.5mV/N to a normal force stimulus at 1Hz (Fig.3).

![Diagram](image1)

Fig.1 A photograph of a flexible tactile sensor and a cross-section of the device

![Diagram](image2)

Fig. 2 Piezoelectric capacitance linear response for increasing applied forces.

![Diagram](image3)

Fig. 3 Flexible sensor response for a sinusoidal signal of an amplitude of 4 N, at a frequency of 1 Hz

References